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Abstract

Cuffless estimation of arterial blood pressure (ABP) is
an ongoing topic of research and development that may
revolutionize home monitoring. Into this path, innova-
tive artificial intelligence (Al) tools, especially deep neural
networks based on end-to-end computation, have gained
much attention as they can leverage the bundle of signals
acquired by integrated wearable devices to estimate di-
rectly the ABP, avoiding the assessment of intermediate
features. In this work, we performed a feasibility analy-
sis testing different neural architectures to process in bun-
dle ECG and PPG signals to estimate continuously the BP.
Data were collected from an already processed version
of the MIMIC-II dataset from physionet.org. The recon-
structed ABP was only partially accurate (mean absolute
error in the range of 10 mmHg) due to the questionable
quality of the data, despite extensive noise and outliers re-
moval. This poses questions about the role of end-to-end
approaches that, while saving effort in feature-engineered
detection, appears to be very sensitive to the input data

quality.

1. Introduction

Cardiovascular diseases (CVD) represent one of the
dominant cause of death including a vast majority of com-
plications with large impact on human health, such as my-
ocardial infarction and stroke and their incidence is deter-
mined by a large multitude of factors [1]. Among these,
high blood pressure (BP), unless addressed in its early
stages, may develop into chronic hypertension and con-
tribute to the increase of CVD risk [2]. BP measurement on
a long-term basis has been identified as the main technique
to detect hypertensive conditions [3]. The measure of BP
is traditionally performed by ambulatory blood pressure
monitoring, requiring an arm-cuff device called pressure
Holter and harnessing the oscillometric technique, with
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long-term measurements typically executed on a 24-48 hrs
basis at intervals of 15-30 minutes. However, some spe-
cific events, such as masked hypertension and white coat
phenomenon, make intermittent measurements inconclu-
sive requiring continuous recording to ensure the clinical
assessment of hypertensive conditions [4]. Likewise, be-
ing invasive and substantially uncomfortable, arm-cuff de-
vice may interfere with sleep quality, featuring further con-
founding variability. Less invasive monitoring approaches
avoids the cuff exploiting volume clamp, coupled to finger
photopletismography, and tonometry applanation. Both
techniques however demand active mechanical stimulation
limiting again the use in daily life activities and during
overnight [5]. Non-invasive BP monitoring has recently
received a major boost with the introduction of wearable
devices, which are capable of unobstructively measuring
electrocardiographic (ECG), photopletismographic (PPG)
and phonocardiagraphic (PCG) signals [6]. BP estimation
makes use of intermediate physiological quantities such as
the R-wave peak and cardiac sounds, detected in ECG and
PCG respectively, and specific PPG fiducial points to com-
pute transit time of the blood pulse (PTT) at a peripheral
site. The first cardiac sound (S1), occurring at the begin-
ning of ventricular systole and corresponding to the mitral
and tricuspid (atrioventricular) valve closure, has been pro-
posed in substitution of the R-wave peak as proximal tim-
ing for PTT estimation to avoid pre-ejection period (PEP)
[7]. For the distal timing, fiducial points as the foot, the
maximum slope and the systolic peak, detected in the PPG
waveform in the same cardiac cycle of the selected prox-
imal event, may be used [8]. Models relating BP to PTT
have been extensively studied spanning non-linear regres-
sion, like inverse model [9, 10], and analytical functions,
like the Moens-Korteweg (M-K) model [11, 12], respec-
tively. In this regards, the automatic and accurate identifi-
cation of events and fiducial points in the signals becomes
fundamental to guarantee a reliable estimate of the PTT. In
order to overcome issues related to accurate identification
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of fiducials, more recently research interest has been fo-
cused on end-to-end computation of the BP leveraging the
bundle of signals acquired by integrated wearable devices
and deep learning techniques [13—15]. In this work we per-
formed a feasibility analysis testing different architectures
of deep neural networks to process in bundle ECG and
PPG signals to estimate continuously the BP. Data were
collected from a publicly available dataset.

2. Methods

2.1. Dataset

The dataset used in this work, freely available from [16],
was originally collected from MIMIC II (Multiparameter
Intelligent Monitoring in Intensive Care II) database (phy-
sionet.org). MIMIC II contains physiologic signals and vi-
tal signs time series captured from patient monitors, and
comprehensive clinical data obtained from hospital medi-
cal information systems, for tens of thousands of Intensive
Care Unit (ICU) patients. Data were collected between
2001 and 2008 from a variety of ICUs (medical, surgi-
cal, coronary care, and neonatal) in a single tertiary teach-
ing hospital. The available data underwent noise removal
and outlier cleaning. The dataset, incorporating electro-
cardiogram (ECG), photoplethysmograph (PPG), and ar-
terial blood pressure (ABP) signals (Fig. 1), consisted of
a cell array of matrices, each cell is one record part. In
each matrix, each row corresponds to one signal channel
as: 1) PPG signal, FS=125Hz; photoplethysmogram from
fingertip; 2) ECG signal, FS=125Hz; electrocardiogram
from channel II; 3) ABP signal, FS=125Hz; invasive ar-
terial blood pressure (mmHg). We performed a systematic
in-depth analysis to validate signal quality, which revealed
residual systematic noise and artifacts, despite patholog-
ical variability, of relevant entity. Waveform distortions,
signal interruption, wrong ECG channel and both low fre-
quency and high frequency noise were detected (Fig. 2).
Despite the dataset was in principle as already prepro-
cessed, an additional preprocessing step was put in place
to mainly filter out false II lead ECG signals and com-
pletely useless PPG and ABP signals. As far as ECG is
concerned, the maximum of normalized cross-correlation
with a representative kernel of a reliable ECG waveform
was used to exclude useless ECG records. Likewise, PPG
signals were cross-checked against a representative kernel
and corresponding records excluded in cases the normal-
ized cross-correlation were lower than a predefined thresh-
old. Further, according to the literature [17], records were
retained for valid ABP signal according to heuristic DBP
and SBP thresholds (50 < DBP < 130 mmHg, 80 < SBP
< 180 mmHg). Without lack of generality, the consid-
ered record was 7.68 s long, corresponding to 960 samples.
This was the input size for all the implemented models.

Out of 278825 original 960-sample long records exhibiting
a correct ECG lead shape, 65102 were used in the training
and testing phase.
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Figure 1. Example of an 8 s record featuring good quality
of the three signals.
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Figure 2. Example of an 8 s record featuring low quality of
the three signals with artifacts that distort the waveforms.

2.2.  Deep networks and metrics

Three main neural architectures, featuring the same out-
put, namely the ABP temporal signal, were defined ac-
cording to the specific encoding of the input as: 1) a
fully-convolutional 1D U-Net with inputs as stacked (PPG
and ECG) signals represented in the time domain; 2)
an encoder(fully-connected)-decoder(fully-convolutional)
network created to work on input signals represented in
the frequency domain as stack of Fourier Transform mag-
nitude and phase vectors for both PPG and ECG signals; 3)
a fully-convolutional 2D U-Net with 2D inputs represented
in the time-frequency domain as PPG and ECG spectro-
grams stacked as different channels (Table 1). As far as
the third architecture is concerned, the spectrogram was
described in terms of frequency bins and time bins, for
both signals. The performance of the ABP signal regres-
sion was reported as mean absolute error (MAE).
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Table 1. Hyperparameters of the three architectures con-
sidered in this work. In the third architecture the input
spectrograms were computed considering 33 frequency
bins and 29 time bins.

Model Input size  Output size ~ Weights
1D U-Net (960, 2) (960, 1) 46M
Enc/Dec (960, 4) (960, 1) 22M
2D U-Net (33,29, 2) (960, 1) 17"M

MSE Loss with Epochs
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Figure 3. Mean squared error (MSE) on the training set
and on the validation set with training epochs, for different
setups. The setting where the input was ECG and PPG
signal bundle performed better than the setting where the
input was either ECG or PPG.

3. Results

The training was performed on a GeForce-GTX 1600
NVidia GPU and took about 12hrs using a batch size of
256 records. Heuristic tuning of the stop criterion led to
identify about 100 epochs for quasi-optimal convergence.
Model hyperparameters were tuned so as to minimize both
under-fitting and over-fitting. Specific ablation analysis
was performed on the first architecture to evaluate the role
of signal bundle. As expected, the comparison between
stacking PPG and ECG together and using only one signal
at a time was in favour of the first strategy (Fig. 3). In-
terestingly, the networks trained with either ECG or PPG
attained very similar results, ~17% lower than the ECG-
PPG input combination though. Loss and metrics on the
validation set were nonetheless sensibly higher than those
on the training set, this questioning about the generaliza-
tion capabilities of the network. Accuracy results, across
the three network models, allowed to highlight that model
#1 (MAE: 9.87 mmHg) overcame the other two models
(MAE: 17.20, 17.19) (Table 2). The error on systolic and
diastolic pressures was coherent with the MAE computed
on the continuous waveform. Two specific ABP recon-
structions, obtained with network #1 featured high (MAE:
4.85 mmHg) and low (MAE: 9.21 mmHg) quality respec-
tively (Figgs. 4 and 5), despite both PPG and ECG signals
appeared of reasonable quality. Nonetheless, a closer look

Table 2. Results (mmHg) attained with the three architec-
tures.

Model MAE (SD) SBP DBP
#1 9.87(4.59) 11.26(2.42) 8.12(2.17)
#® 17.20 (7.88) 20.68 (4.47) 19.71 (4.31)
#3 17.19 (7.90)  21.02 (4.81) 20.92 (4.67)
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Figure 4. Reconstructed ABP signal with high accuracy
(MAE: 4.85 mmHg).
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Figure 5. Reconstructed ABP signal with low accuracy
(MAE: 9.21 mmHg).

to ECG signal of the second case outlined distortion of the
waveform following QRS interval.

4. Discussion

4.1. Findings

Results (cfr. Fig. 3) confirmed the benefit of incorpo-
rating PPG and ECG rather than considering the effects of
the single signal. Quantitative results highlighted the poor
accuracy when using frequency and spectrogram, this mo-
tivated likely by the underestimation of the network hyper-
parameters role, which might require additional tuning ef-
forts. The first architecture provided results only partially
in agreement with the results (SBP-MAE: 3.96 mmHg;
DBP-MAE: 2.39 mmHg) of similar approaches (MIMIC-
IT dataset, mapping PPG to BP) in the literature [17].
Nonetheless our error was measured along all the wave-
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form and not only taken at systole and diastole events, and
the test was performed on 65102 records (62M samples
against 3M using in [17]).

4.2. Challenges, issues and conclusions

Recent interest in Al-based end-to-end approach for cuf-
fless ABP estimation is motivated by two main reasons:
1) avoiding the detection of fiducials in physiological sig-
nals; 2) achieving the reconstruction of a complete con-
tinuous signal, rather that computing systolic and diastolic
BP only. The initial analysis of the available dataset out-
lined the fundamental need of thorough and systematic re-
vision of signal records in publicly available datasets as
MIMIC-II even in case of prior pre-processing [16]. This
also poses questions about the reliability of the compar-
isons of many algorithms in the literature making used of
such datasets for network training and testing. In con-
clusion, we remark that the findings of this paper, while
preliminary, indicate that ABP continuous estimation with
end-to-end deep network is a recent and actively emerging
area of research. Nonetheless, the clinical translation of
such techniques still demands for extensive validation.
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